Apple /// Computer Technical Information

i ==

Apple S/ i+

Apple /7// SOS 1.3
Technical Information

Undocumented
Apple /// SOS
Features

Written by Rick Sidwell e January 1989

a3info sos 01 . -02-08 dpi: 300h x 302v pix: 1816h x 2425v
| Apple /// SOS Undocumented Features Page 0001 of 0016 |




Apple /// Computer Technical Information

Undocumented Apple /// SOS Features
Rick Sidwell (January 1989)

One of the nicest features of the Apple /// Computer is its operating system,

SOS. In this "Sophisticated Operating System," Apple placed many routines to
make it easy to write programs which are devicetlependent and use the Apple
//I's memory in a cooperative manner. Most of the features of SOS are
documented in three manuals: the SOS Reference Manual, Volumes 1 and 2, and
the SOS Device Writer's Guide. However, the documentation for some of the
features of SOS seems to have been "forgotten" by Apple; for one reason or
another, the manuals don't tell the whole story. This article is about some

of these undocumented features.

There are two types of SOS features which are not documented: features which
should have been documented and items which were best left undocumented. The
main reason that many things were left undocumented by Apple was to allow for
upgrades. Modifications to SOS to fix bugs or add features would change the
locations and possibly the meanings of many internal variables. For example,

if a program depended on the fact that SOS keeps its Volume Control Blocks
(VCB's) at locations $1000-$10FF, and that the device number is in the
sixteenth byte of a VCB, that program would fail miserably if a new version of
SOS changed the format of its VCB's or moved them to a different location. To
allow flexibility for future versions of SOS, Apple did not document such

things, and this article will not do so either.

However, there are a number of SOS calls, entry points, and global variables
which seem to be independent of the SOS version, yet still not documented;

these items are the subject of this article. There are two undocumented SOS
calls, D_READ and D_WRITE, which allow you to read and write to disks
without using the SOS file system. In addition to the normal SOS calls, the first
half of page $19 contains some global variables and SOS entry points, only

some of which have been documented. The undocumented entry points deal with
NMI handling, buffer management, system failures, and clearing a file's backup
bit. The global variables are for communication between SOS, device drivers,

and the interpreter.

Undocumented Apple /// SOS Features  Rick Sidwell (1989) 1o0f 15
“a3info sos 02 .PICT” 303 KB 1999-02-08 dpi: 300h x 309v pix: 2289h x 2916v
| Apple /// SOS Undocumented Features Page 0002 of 0016 |




Apple /// Computer Technical Information

Direct Device /O

SOS provides a sophisticated (by 1980 standards) file system which is sufficient for
most needs. It is designed to be safe, so that you won't accidently trash a disk using
file system commands. Because of this, there are some things that it can not do--
more dangerous commands are needed. Although not documented in the SOS
manuals, SOS does provide these dangerous commands: Device calls $80 and $81
are D_READ and D_WRITE, which call a device driver to read and write
directly, bypassing the SOS file system.

If the SOS Reference manual included a description of D_READ and D_WRITE,
it would certainly have been accompanied by a stern warning such as the
following (adapted from the ProDOS manual):

WARNING: These commands are intended to be used by utility and diagnostic
programs. Application programs should not use these commands: they can very
easily damage the integrity of the SOS file structure. All necessary functions can be
performed without these commands.

Consider yourself warned! However, if you are writing a utility or diagnostic
program, the D_READ and D_WRITE commands are used like any other SOS
command; the process is decribed in detail in chapter 8 of the SOS reference
manual. You issue a BRK command, followed by the command number (which is
$80 for D_READ and $81 for D_WRITE), followed by the address of the
parameter list:

BRK

.BYTE 80 ;for D_Read (use 81 for D Write)
.WORD DRLIST

Undocumented Apple /// SOS Features  Rick Sidwell (1989) 2 of 15

“a3info sos 03 .PICT” 194 KB 1999-02-08 dpi: 300h x 309v pix: 2284h x 2933v
| Apple /// SOS Undocumented Features Page 0003 of 0016 |




Apple /// Computer Technical Information

The parameter lists have the following format:

D_READ $80 D WRITE $81

0 | $05 | [ $04 | # parameters
| ——=———— ! f === I
1 | dev_num | | dev_num | device number
Rt I |
2 | buffer | | buffer | buffer pointer
3 | | | I
| === I |
4 | request | | request | number of bytes
5 | count | | count | to read or write
| ————————= | f———————— |
6 |  block | | block | Block number
7 | | | |
[—===——- |
8 | transfer| numpber of bytes
9 | count | actually read

A description of each parameter follows, in a style similar to the SOS
Reference manual.

dev_num: 1 byte value
Range: $01..$18

This is the device number of the device to read or write, obtained from the
GET_DEV_NUM ecall.

buffer: pointer

This is a pointer to the buffer to which the data will be read (or from which
it will be written). It must be large enough to hold the requested number of
bytes. As with all SOS pointers, it can contain the address of either an
absolute location in the current bank, or a zero page location which contains
an extended address in any bank.

request_count: value
Range: $0000..$FFFF

This is the number of bytes to read or write. For block devices, it must be a
multiple of 512 ($200) or a BYTECNT error will occur.

block: value
Range: $0000..$FFFF

Undocumented Apple /// SOS Features  Rick Sidwell (1989) 3o0f15

“a3info sos 04 .PICT” 155 KB 1999-02-08 dpi: 300h x 309v pix: 2198h x 2927v
| Apple /// SOS Undocumented Features Page 0004 of 0016 |




Apple /// Computer Technical Information

This the block number of the first block to be transferred. It is ignored for
character devices. For block devices, the blocks are numbered from $0000 to
the highest block on the disk (one less than the number of blocks).

transfer_count: 2 byte result
Range: $0000..$FFFF

If a D_READ is successful, the number of bytes actually read is returned in
this parameter. It will be less than request_count if the newline character
is encountered when reading from a character device with newline mode set.

Errors

$11: BADDNUM Invalid device number
$23: NOTOPEN Device not open

$26: BADOP Invalid operation

$27: IOERROR I/0 error

$28: NODRIVE Drive not connected
$2A: CRCERR Checksum error

$2B: NOWRITE Device write protected
$2C: BYTECNT Byte count.not multiple of 512
$2D: BLKNUM Block number too large
$S2E: DISKSW Disk switched
$30..83F: Device-specific errors

Before leaving the D_READ and D_WRITE commands, consider the following
situations when you should NOT use them. If you are using a character device,
you should use the file READ and WRITE commands; although D_READ and
D_WRITE do almost exactly the same thing, if you accidently do a D_WRITE to a
block device instead of a character device, you will probably inadvertantly destroy
some data. If you need to read a directory, use OPEN and READ rather than
D_READ; it is easier since SOS already has the code to figure out where the
directory is located. If you need to write to a directory, be careful! SOS

can modify most attributes with the RENAME or SET_FILE_INFO commands,
and is very careful that the correct disk is in the drive before it does so.

Finally, here are a few of the situations for which the D_READ and D_WRITE
commands are essential. Reading and writing the boot blocks (blocks 0 and 1
of the disk), as well as putting a blank directory on a freshly formatted disk

are impossible to do with SOSmmands. A program which verifies the

file structure of a questionable disk to make sure that all of the pointers

and bitmap are consistent would have to use D_READ; the index blocks are not

Undocumented Apple /// SOS Features  Rick Sidwell (1989) 4 of 15

“a3info sos 05 .PICT” 262 KB 1999-02-08 dpi: 300h x 309v pix: 2289h x 2865v
| Apple /// SOS Undocumented Features Page 0005 of 0016 |




Apple /// Computer Technical Information

accessible using SOS file commands. An important application of D_READ and
D_WRITE is to access files on non-SOS disks; the Apple /// Pascal system, for
example, uses them to access Apple ][ Pascal disks.

As an example of using D_READ and D_WRITE, a simple interpreter which
copies the contents of the disk in drive 1 to the disk in drive 2 is in a separate

file called DCOPY.ASM. For simplicity, many features which should be present
in such a program, such as verifying the copy and nice error handling, have been
left out.

Non-Maskable Interrupts

The Apple /// supports several kinds of interrupts. The "normal" interrupts

are called IRQ's (which means interrupt request), and are handled by SOS using
the SIR mechanism described in the SOS Device Driver Writer's Guide. Another
kind of interrupt is the Non-Maskable Interrupt, or NMI. This name comes
from the fact that there is a machine language instruction which will mask (or
disable) IRQ interrupts, but NMI interrupts can not be masked. They are
generally used for things which are so important that they should not be

ignored. On the Apple //, NMI interrupts can be generated from two sources:

a peripheral card in one of the I/O slots and the Reset key on the keyboard.

They are handled completely differently.

Slot NMTI's

Peripheral card devices which are interrupt driven should generally use IRQ
interrupts rather than NMI interrupts. There are four reasons for this:

First, only one device may use NMI interrupts at any given time; if two
devices are configured which both depend on NMI interrupts, only one may be
opened at a time. Second, critical sections of code can temporarily mask

IRQ's to prevent them from being interrupted; although NMI's can be disabled
it is not as convenient. Third, NMI handlers may not call ANY SOS routines,
including such useful ones as QUEEVENT and SELC800. Fourth, if an
interpreter disables the Reset key, either as part of a copy-protection scheme or
for some other reason, NMI interrupts will also be disabled. Thus NMI driven
devices can not be used with such interpreters as Apple Writer.

b

Although it should be avoided, using NMI interrupts is much faster than using
IRQ interrupts. Besides the faster dispatch time (SOS does not need to poll

Undocumented Apple /// SOS Features  Rick Sidwell (1989) 50f 15

“a3info sos 06 .PICT” 296 KB 1999-02-08 dpi: 300h x 309v pix: 2245h x 2922v
| Apple /// SOS Undocumented Features Page 0006 of 0016 |




Apple /// Computer Technical Information

each device to determine which device caused the interrupt), NMI interrupts
have a higher priority than any IRQ interrupt, and will be acknowledged even
if interrupts are disabled while executing an IRQ handler. To use NMI
interrupts effectively, the device driver should be able to anticipate when

the device will generate an interrupt. For example, a disk drive which will
interrupt shortly after an I/O request is given would work, while a serial

port which might generate an interrupt at unpredictable times would not. If
the NMI interrupt can be anticipated, then SOS will wait for the interrupt
before granting a user request to disable NMI interrupts.

A device driver can determine whether NMI interrupts are enabled or not by
examining bit 4 of the environment register ($FFDF). Ifit is set, NMI's are
enabled; if it is reset, they are not. A device driver should not set this bit, but simply
report an error if NMI's are disabled and it needs them. A device driver reserves
the NMI interrupt in the same way as it does an IRQ interrupt: by using
ALLOCSIR (JSR $1913) as described in the SOS Device Driver Writer's Guide;
the SIR number for the NMIis 0. This is usually done during the device
D_OPEN call for character devices or the D_INIT call for block devices.

When an I/O operation is requested which will cause an NMI interrupt, the
driver should do the following: Make sure that NMI's are enabled (as
described above), set bit 7 of NMIPend ($1903) to prevent them from being
disabled before the NMI occurs, and perform the initial operations on the
device which can be done before the interrupt occurs. When the NMI occurs,
the NMI handler should reset bit 7 of NMIPend($1903), and then handle the
interrupt. If the interpreter should request SOS to disable NMI's by calling
NMIDSBL while bit 7 of NMIPEND is set, SOS will wait until it is reset before
disabling the NMI's. If the NMI does not occur within a short time, SOS will
halt with system failure $04.

Keyboard NMI's

A keyboard NMI is generated when the user presses the Reset key (by itself:
Control-Reset will reboot the system). Unlike slot NMI's, keyboard NMI's are
handled by the interpreter. When SOS gets a keyboard NMI, it calls the

routine at USRNMI ($1910); this is a JMP instruction which the interpreter can
fill in with the proper address. Store the low byte in $1911 and the high

byte in $1912 (location $1910 contains the JMP op-code). This address must be
in the system bank (the one containing the interpreter). Should the

interpreter need to restore the default handler (which does nothing), its

Undocumented Apple /// SOS Features Rick Sidwell (1989) 6 of 15

“a3info sos 07 .PICT” 340 KB 1999-02-08 dpi: 300h x 309v pix: 2261h x 2927v
| Apple /// SOS Undocumented Features Page 0007 of 0016 |




Apple /// Computer Technical Information

address is stored at $1904 and $1905.

A keyboard NMI handler has the same restrictions as a slot NMI handler,
namely NO SOS routines may be called. A typical use of the keyboard NMI is to
set a flag which will cause an executing program to abort at a convenient time.

Disabling NMI's

Although NMI interrupts are not maskable with ordinary 6502 instructions, the
Apple /// and SOS provide a way to disable them. The same mechanism disables
slot NMI's, keyboard NMTI's, and rebooting via Control-Reset; there is no way

to disable one without disabling the others. Disabling NMI's is useful in

several situations: Critical routines, such as those found in disk drivers,

may disable NMI interrupts as well as IRQ interrupts both to prevent them from
interfering with the timing and to prevent a reboot from destroying data. An
interpreter might disable NMI's during critical operations such as a data base
update to help maintain the data base integrity. A copy-protection scheme may
disable NMI's to prevent hackers from using the Apple /// monitor to help

break the protection. :

SOS provides the following two entry points to disable and re-enable NMI
interrupts:

NMIDSBL Entry point $1919

NMIDSBL will disable NMI interrupts and the Reset key. In order to allow
pending NMI's to be serviced, NMIDSBL waits until bit 7 of NMIPEND ($1903)
is clear as described above. If the NMI does not occur within a short period of
time, system failure $04 will occur. NMIDSBL is normally called by the
interpreter. Device drivers and interrupt handlers may call it if needed,
however NMI's will be re-enabled when control is returned to the interpreter;
only the interpreter may disable NMI's permanently.

Undocumented Apple /// SOS Features Rick Sidwell (1989) 7 of 15

“a3info sos 08 .PICT” 232 KB 1999-02-09 dpi: 300h x 309v pix: 2261h x 2910v
| Apple /// SOS Undocumented Features Page 0008 of 0016 |




Apple /// Computer Technical Information

NMIENBL Entry point $191C

NMIENBL will enable NMI interrupts and the Reset key. NMIENBL should be
called only by an interpreter. Other environments may restore the NMI enable
status after finishing a critical section protected by NMIDSBL by saving the
environment register ($FFDF) before calling NMIDSBL, and restoring it after
the critical section.

Buffers

Interpreters and user programs can request memory by using one of the memory
manager SOS calls, but device drivers run in the SOS environment and can not
perform SOS calls. Normally, a device driver will reserve enough memory in

its code to suit its needs, but SOS does provide a method for device drivers

to request extra memory using the same mechanism it uses to allocate buffers
for file I/O.

Buffers are special in two ways. First, SOS may move buffers around in order
to prevent memory fragmentation. Second, an integrity check is built into SOS
to help detect unauthorized modification of buffers. Caution must be used
with the arguments passed to these routines. An invalid buffer number or size
is a FATAL error; the system will halt. It does this since buffers are used
mostly by the file system, and errors there can easily destroy a disk--rather
than risk this, SOS will halt the system if an error is detected.

There are three SOS routines which deal with buffers: REQBUF (JSR $192B),
GETBUFADR (JSR $192E), and RELBUF (JSR $1931). Only a device driver
may call these routines--interpreters and interrupt handlers may not use them.
Furthermore, a device driver's D_INIT routine should not use these routines;
for some reason SOS initializes the device drivers before it initializes

either the buffer manager or the memory manager.

REQBUF Entry Point $192B

REQBUF is used to request a buffer from SOS. The buffer may be up to 64 pages
long.

Undocumented Apple /// SOS Features  Rick Sidwell (1989) 8 of 15

“a3info sos 09 .PICT” 246 KB 1999-02-09 dpi: 300h x 309v pix: 2278h x 2916v
| Apple /// SOS Undocumented Features Page 0009 of 0016 |




Apple /// Computer Technical Information

Parameters passed:
A: Size of the buffer in pages ($01..%40)
Normal exit:

Carry: Clear
A Buffer number ($01..S$1F)

Error exit;

Carry: Set

A: Error code
Errors:
$54: OUTOFMEM Memory manager could not allocate a buffer
$55: BUFTBLFULL Buffer table full
System failure $10: Invalid pbuffer size
GETBUFADR Entry Point $192E

GETBUFADR is used to get the current address of a previously allocated buffer.
Since buffers can move around in memory, you should call GETBUFADR each
time your driver is called. GETBUFADR also makes sure that the first byte of the
buffer has not changed since the last time you driver exited after using it;

system failure $0F (invalid buffer number) will occur if it has.

The address of the buffer is placed in the zero page location stored in the X
register. For example, if X contains $D4 when GETBUFADR is called, the buffer
address will be placed in $D4 and $D5, with the X-byte in $14D5. No error
return is possible; all errors are fatal.

Undocumented Apple /// SOS Features Rick Sidwell (1989) 9 of 15

“a3info sos 10 .PICT” 138 KB 1999-02-09 dpi: 300h x 309v pix: 2261h x 2910v
| Apple /// SOS Undocumented Features Page 0010 of 0016 |




Apple /// Computer Technical Information

Parameters passed:

A: Buffer number
X: Address of zero page location to put address

Normal exit:

Carry: Clear

A: Size of the buffer in pages

(X) : The buffer address (in the specified location)
Errors:
System failure $OF: Invalid buffer number
RELBUF Entry Point $1931

RELBUF releases a buffer allocated by REQBUF. It then moves some or all of
the buffers to new memory locations to prevent the memory from becoming
fragmented. You will rarely use more than one buffer; if you do, you will

need to use GETBUFADR to get the addresses of the remaining buffers after
releasing one of them with RELBUF. No non-fatal errors are possible.

Parameters passed:

A: Buffer number
Errors:
System Failure $10: Invalid buffer number
Undocumented Apple /// SOS Features  Rick Sidwell (1989) 10 of 15

“a3info sos 11 .PICT” 106 KB 1999-02-09 dpi: 300h x 309v pix: 2205h x 2933v
| Apple /// SOS Undocumented Features Page 0011 of 0016 |




Apple /// Computer Technical Information

Other SOS Entry Points

Most of the other SOS entry points are documented in chapter 4 of the SOS
Device Driver Writer's Guide. The two that are not are described below:

SYSFAIL Entry point $1925

SYSFAIL is used when an irrecoverable error is encountered. Since any data
not written to disk will be lost, this routine should be called only in dire
emergency, when the alternative is worse. A list of the error numbers with a
description of each error is given in Appendix D of the SOS Reference Manual.

SYSFAIL displays SYSTEM FAILURE and the error number in the bottom right
corner of the screen and hangs the system. The only possible recovery is to

reboot the system. However to help debugging, SYSFAIL stores the system
status on page $19; these locations can be accessed with the Apple ///

monitor. The following information is stored:

S19F6 Bank register

$19F7 Zero page register
$19F8 Environment register
$19F9 6502 Y register

$19FA 6502 X register

$19FB System failure number
$19FC 6502 status register
$19FD/$19FE Program counter
$S19FF Stack pointer
$1700-$17FF System stack

Parameters passed:

A: The system failure number

CLRBACK Entry point $1934

Every SOS file has a bit known as the backup bit. This bit is set whenever

any operation is done which modifies the file. Backup programs, such as
BACKUP /// can examine this bit to determine which files have been modified
since the last backup. After backing up the file, the program can then clear

the bit. Clearing the backup bit is done by calling CLRBACK just before

calling SET_FILE_INFO; this forces SOS to use the setting given in the
SET_FILE_INFO parameter list rather than automatically setting it. Note that

Undocumented Apple /// SOS Features  Rick Sidwell (1989) 11 of 15

“a3info sos 12 .PICT” 223 KB 1999-02-09 dpi: 300h x 309v pix: 2261h x 2922v
| Apple /// SOS Undocumented Features Page 0012 of 0016 |




Apple /// Computer Technical Information

CLRBACK must be called just before each SET_FILE_INFO call which is to
clear the backup bit.

Parameters passed:

A: $00 to use the given backup bit setting
$20 to always set the backup bit

SOS Globals

SOS reserves several locations for communication between SOS, the interpreter,
and device drivers. These locations are described below. They should never
be modified except as indicated.

MEMSIZE Location $1900

MEMSIZE contains the size of the memory in 16K units. It is used to determine
the size of the machine. A 128K system will have a MEMSIZE of $08, a 256K
system will have a MEMSIZE of $10, and a 512K system will have a MEMSIZE
of $20.

SYSBANK Location $1901

SYSBANK contains the bank number of the system bank, which happens to be the
highest bank. It is used by SOS as the bank of the USRNMI routine, and can be
used by an interpreter which uses overlays in different banks to switch back

to the bank containing the main interpreter code.

SUSPFLSH Location $1902

This location is not used by SOS, but by the .CONSOLE driver for its suspend
and flush output features (normally controlled by Control-7 and Control-9 on
the keypad). Bit 7 is set if output is suspended; Control-7 will toggle it,

and Control-9 will reset it. Bit 6 is set if output is being flushed;

Control-9 will toggle it. The other bits are not currently used.

Although normally used only by the .CONSOLE driver, other programs may find
SUSPFLSH useful also (be sure to disable interrupts while you modify a bit to
preserve the integrity of the other bits). For example, a program can

Undocumented Apple /// SOS Features  Rick Sidwell (1989) 12 of 15
“a3info sos 13 .PICT” 217 KB 1999-02-09 dpi: 300h x 309v pix: 2279h x 2910v
| Apple /// SOS Undocumented Features Page 0013 of 0016 |




Apple /// Computer Technical Information

frustrate a user by resetting bit 7 just before doing any output (this prevents the
user from stopping the output). A more useful program can examine bit 6
occasionally and abort the output if it is just being flushed. When a program
reaches a point where the user would probably like to turn off flushing, it can do so
automatically either by performing a Reset Driver D_CONTROL call (which has
other effects, like clearing type-ahead), or by resetting bits 6 and 7 of SUSPFLSH.

NMIPEND Location $1903

Bit 7 of NMIPEND is set by device drivers which expect an NMI interrupt
shortly, and reset by the NMI handler when it occurs. It is used to prevent
the NMI from being disabled by a call to NMIDSBL until after the NMI has
occurred. It should be modified only by a device driver which has

successfully allocated SIR 0. It may be read by any routine, possibly to

avoid a system failure caused by calling NMIDSBL if the NMI does not occur.

DFLTNMI Locations $1904-$1905

DFLTNMI contains the default keyboard NMI handler, which does nothing. It
may be used by the interpreter to remove its own handler if it no longer wishes to
handle keyboard NMI's.

SCRNMODE Location $1906

SCRNMODE stores the current mode of the Apple /// screen. It should be
modified whenever the mode of the screen is changed. The previous value may
be saved to restore the screen to the previous mode. For example, when SOS
asks the user to change disks in some drive, it uses SCRNMODE to restore the
screen to its previous setting when the disk is changed. SOS makes no attempt
to ensure that the screen is in the correct mode except for the screen on/off

bit, which it sets whenever it returns to the user after a SOS call or an
interrupt.

The bits have the following meanings:

Bit 7: O for screen off, 1 for screen on
Bit 6: O for text, 1 for graphics
Bit 2: 0 for page 1, 1 for page 2
Bit 1: 0 for 40 columns, 1 for 80 columns
Bit 0: O for black and white, 1 for color
Undocumented Apple /// SOS Features  Rick Sidwell (1989) 13 of 15

“a3info sos 14 .PICT” 253 KB 1999-02-09 dpi: 300h x 309v pix: 2279h x 2905v
| Apple /// SOS Undocumented Features Page 0014 of 0016 |




Apple /// Computer Technical Information

GRAFMEM Location $1907

GRAFMEM contains the number of pages currently reserved for graphics.
Graphics memory starts at location $2000 of bank 0. Since device drivers, in
particular the .GRAFIX driver, can not make SOS calls to reserve memory, it
depends on the interpreter to reserve memory for the graphics screens. The
interpreter should set this location accordingly when it does so. The .GRAFIX
driver makes sure that the memory has been reserved before modifying it by
drawing on a graphics screen.

DISKBUSY Location $1908

DISKBUSY is non-zero if a disk driver is accessing the disk. Although the
driver takes care to disable interrupts when it is actually reading or writing
data, it allows interrupts to occur between blocks. If these interrupts take

too long, the next block may pass by the read/write head when the driver isn't
looking. This is not serious--the block will come around again. But disk
access will be slowed down. To prevent this, an interrupt handler which takes
a relatively long time should check this byte, and if it is not zero, should

avoid the long operation. If this is not possible, there is no harm

done--just a longer disk access time.

Undocumented Apple /// SOS Features Rick Sidwell (1989) 14 of 15

“a3info sos 15 .PICT” 166 KB 1999-02-09 dpi: 300h x 309v pix: 2221h x 2939v
| Apple /// SOS Undocumented Features Page 0015 of 0016 |




Apple /// Computer Technical Information

Summary of SOS Globals and Entry Points

$1900
$1901
$1902

$1903
$1904
$1905
$1906

$1907
$1908
$1910
$1913
$1916
$1919
$191C
$191F
$1922
$1925
$1928
$192B
$192E
$1931
$1934

MEMSIZE
SYSBANK
SUSPFLSH

NMIPEND
DEFNMI (L)
DEFNMI (H)
SCRNMODE

GRAFMEM
DISKBUSY
USRNMI
ALLOCSIR
DEALCSIR
NMIDSBL
NMIENBL
QUEEVENT
SELC800
SYSFAIL
SYSERR
REQBUF
GETBUFADR
RELBUF
CLRBACK

Undocumented Apple /// SOS Features

The size of the memory in 16K units.

The system (highest) bank number

Output suspend/flush flag
Bit 7: 1 if scrolling is stopped
Bit 6: 1 if output is disabled

Bit 7 is set if an NMI is pending

Low byte of the default user NMI handler

High byte of the default user NMI handler

Screen mode flag
Bit 7: O for screen off, 1 for on
Bit 6: O for text, 1 for graphics
Bit 2: 0 for page 1, 1 for page 2
Bit 1: O for 40 col., 1 for 80
Bit 0: O for b/w, 1 for color

Amount of memory allocated for graphics

Non-zero if a disk is busy

JMP to user's keyboard NMI handler

Allocate an SIR

Deallocate an SIR

Disable NMI's and the Reset key

Enable NMI's and the Reset key

Queue an event

Select a slot's C800 ROM space

Report a system failure

Report an error

Request a buffer

Get the address of a buffer

Release a buffer

Let SET FILE_INFO clear the backup bit

<<< FINIS >>>

Rick Sidwell (1989) 15 of 15

“a3info sos 16 .PICT” 140 KB 1999-02-09 dpi: 300h x 309v pix: 2216h x 2927v

| Apple /// SOS Undocumented Features

Page 0016 of 0016 |




